A basal stem cell signature identifies aggressive prostate cancer phenotypes.

نویسندگان

  • Bryan A Smith
  • Artem Sokolov
  • Vladislav Uzunangelov
  • Robert Baertsch
  • Yulia Newton
  • Kiley Graim
  • Colleen Mathis
  • Donghui Cheng
  • Joshua M Stuart
  • Owen N Witte
چکیده

Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p63 is more sensitive and specific than 34βE12 to differentiate adenocarcinoma of prostate from cancer mimickers

Objective(s): Prostate cancer is the world’s leading cause of cancer and the second cause of cancer-related death in men after lung cancer. Differentiation of prostate adenocarcinoma from benign prostate lesions and hyperplasia sometimes cannot be done on the basis of morphologic findings. Considering the fact that in the prostate adenocarcinoma there is no basal cell layer, basal cell markers ...

متن کامل

Bad seeds produce bad crops: a single stage-process of prostate tumor invasion

It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in "healthy" young men and cancer DNA phenotype in morphologically norm...

متن کامل

Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Thro...

متن کامل

Progression of prostate cancer from a subset of p63-positive basal epithelial cells in FG/Tag transgenic mice.

Transgenic mice that allow targeting of SV40 T antigen (Tag) to the prostate provide a unique model to identify cancer-initiating cells and follow their progression from a normal cell phenotype into prostate cancer cells. We have developed the FG/Tag transgenic mouse model of prostate cancer using the human fetal globin (FG) promoter linked to Tag. Immunohistochemistry results show that before ...

متن کامل

s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 47  شماره 

صفحات  -

تاریخ انتشار 2015